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We consider the steady sedimentation under gravity of a viscous drop, suspended in
a viscous liquid, along a plane tilted at a small angle α to the horizontal. The drop
does not wet the wall but is supported by a thin lubricating film of liquid. In the
Stokes-flow limit, the problem is parameterized by α, the ratio B of buoyancy to
capillary forces (a Bond number) and a viscosity ratio λ. Provided B is not too large
(B � α−1 in two dimensions, B � α−4/3 in three dimensions), the drop’s motion can
be described asymptotically by combining a capillary-statics approximation for the
drop shape away from the wall, lubrication theory for the thin film and a combina-
tion of lubrication theory and a half-plane boundary-integral method for the drop
interior.

Systematic scaling arguments for both two- and three-dimensional drops, supported
by detailed calculations, are used to survey (B, λ)-parameter space for fixed α � 1. We
find a strong coupling between drop shape (ranging from nearly round to a flattened
pancake), kinematics (including slipping, sliding, rolling and tank-treading motions)
and the site of dominant viscous dissipation (the edges of the thin film, the bulk of
the thin film or the drop interior). Predictions of drop speed and shape are compared
with available experimental and computational data.

1. Introduction
In this paper we consider the motion of a viscous drop, of viscosity λµ and density

ρ + �ρ, suspended in an external fluid of viscosity µ and density ρ. With �ρ > 0, the
drop sediments in a vertical gravitational field g toward a plane tilted at an angle
α � 1 to the horizontal; equivalently for �ρ < 0 we can consider it rising against the
underside of the plane. We assume that the suspending fluid wets the plane so that,
after some time, the drop moves steadily along the plane with speed U�, supported
by a lubricating layer of liquid. The component of gravity acting normal to the
plane distorts the drop from its initially spherical shape; the degree of distortion is
controlled by the Bond number B = �ρga2/γ , where a is the radius of the undistorted
drop and γ is its uniform surface tension. If the drop is very viscous (λ→ ∞), we
expect the distorted drop to slide down the plane without rotating; if the drop is
relatively inviscid (λ→ 0), it will ‘slip’ down the plane with external viscous stresses
driving a passive recirculating flow within the drop. For intermediate viscosity ratios,
we expect the drop to move with a combination of sliding, slipping and rolling
motions with the internal flow in the drop potentially taking a dominant role in
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determining the overall motion. We aim to predict the drop’s shape and kinematics
when inertial forces are negligible and when the surface tension γ dominates viscous
forces everywhere except in the lubricating film beneath the drop. As well as having
intrinsic interest in fluid-mechanical terms, this problem has applications to diverse
technological processes (such as microfluidics) and to biology (e.g. as a model of an
embolism or an adherent cell in a blood vessel).

While numerous authors have examined the effects of walls on the motion of
deformable drops and bubbles (for a recent review see Magnaudet, Takagi & Legendre
2003), literature treating the zero-Reynolds-number motion of a non-wetting drop or
bubble in close proximity to a nearly horizontal plane is relatively scarce. Masliyah,
Jauhari & Gray (1994) performed experiments on bubbles rising under inclined plates
at low Reynolds numbers and showed that U� increases monotonically with α. Tsao &
Koch (1997) measured the speed at which a nearly circular bubble rises beneath a tilted
wall. Although their experiments were conducted at moderate Reynolds numbers, they
recognized that viscous lubrication forces beneath the deformed bubble could be large
enough to balance the gravitational force normal to the plane. Aussillous & Quéré
(2002) investigated bubbles rising steadily under a nearly horizontal surface. For large
pancake-shaped bubbles (for which a greatly exceeds the capillary length

√
γ /�ρg, so

that B � 1), they used scaling arguments to predict that U� is proportional to a9/4α3/2

(balancing dissipation in the nose and tail regions of the thin lubricating film with
the rate of change of potential energy), and provided experimental data confirming
this prediction. For small nearly spherical bubbles (for which B � 1), they proposed a
scaling argument involving the Stokes drag on the bubble; we reconsider this regime
below.

The motion of viscous drops is enriched by competition between flows inside and
outside the drop. Mahadevan & Pomeau (1999) used scaling arguments to identify an
unexpected feature of the motion of non-wetting drops. A small drop (with B � 1)
is almost spherical except for a flat spot at its base. They predicted that such a
drop rolls down a gently tilted plane in solid-body rotation throughout its interior
except for a small region above the flat spot. Balancing viscous dissipation in this
small region with the rate of change of potential energy of the drop, they found that
U is proportional to 1/a (i.e. small drops roll quicker than large ones). They also
predicted that pancake-shaped drops (with B � 1) roll down a surface at a speed
independent of �ρg. These predictions were confirmed experimentally by Richard &
Quéré (1999) (using small liquid drops rolling down highly hydrophobic surfaces) and
Aussillous & Quéré (2001) (using small droplets coated with a hydrophobic powder to
make them non-wetting ‘liquid marbles’). Abkarian, Lartigue & Viallat (2001) showed
how phospholipid vesicles of dimensions 10–50 µm, suspended in liquid, move by a
combination of sliding and rolling under gravity along a plane surface. This motion
was modelled using the classical theory of Goldman, Cox & Brenner (1967) for
a sphere moving near a wall, assuming a minimum separation distance of around
0.05 µm, a distance at which thermodynamic fluctuations of the vesicle’s membrane
may be significant.

DeBisschop, Miksis & Eckmann (2002) used a boundary-integral method to
compute the unsteady motion of a train of two-dimensional drops in an inclined
channel, allowing for the presence of surfactants but assuming the viscosity ratio
λ=1. They showed how, under certain circumstances, drops can assume a steady
configuration (although the time taken for transients to decay increases as the channel
became more horizontal) and they computed the dependence of bubble speed and
shape on parameters including B and α.
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The literature treating the motion of a non-wetting drop near a gently inclined
plane is therefore patchy: a number of intriguing phenomena have been identified,
and isolated regions in parameter space have been studied, but no systematic survey
of parameter space is yet available. To remedy this, we use scaling arguments to
map out regions in (B, λ)-parameter space (for fixed α � 1) for both two- and three-
dimensional drops characterizing asymptotically distinct changes in drop shape, sites
of dominant viscous energy dissipation and drop kinematics (see figures 4 and 12
below). We then use asymptotic approximations (capillary statics for the drop shape
away from the wall, lubrication theory for the thin gap and, where necessary, a half-
plane two-dimensional boundary-integral method (Hodges, Jensen & Rallison 2004)
or lubrication theory for the internal flow) to determine the coefficients in front of
the terms identified by scaling arguments.

The organization of the paper is as follows. We treat two-dimensional drops in
some detail (§ § 2–5), partly to explain scaling arguments carefully (summarized in
table 1), partly because of some intrinsic complications of two-dimensional motion
and partly because two-dimensional features prove to be an essential ingredient of
three-dimensional calculations. In § 2 we analyse the static ‘sessile’ drop shape and
describe the physical ingredients of the sedimenting drop problem, defining the terms
‘sliding’, ‘slipping’, ‘rolling’ and ‘tank-treading’ for possible drop motions. In § 3 we use
these ingredients to obtain scaling estimates for the drop velocity and layer thickness
for the different regions of parameter space that we have identified. In § 4, we solve
the lubrication equations to find numerical coefficients for our scaling estimates for
extreme values of the parameters, and in § 5 we give a physical description of our
results and compare them with the two-dimensional computations of DeBisschop
et al. (2002). Three-dimensional drops are given a more succinct treatment in § § 6–8:
scalings in this case are derived in § 6 and are summarized in table 3, numerical
coefficients are computed in § 7 and predictions are discussed in the light of available
experiments in § 8.

2. Two-dimensional drops: preliminaries
We begin by setting the stage for a systematic scaling argument presented in § 3

below. We first recall briefly the shape of a sessile non-wetting drop resting on a
horizontal wall.

2.1. Sessile two-dimensional drop

Suppose a two-dimensional drop rests statically on a horizontal wall, as shown
in figure 1(a). Scaling lengths on the drop’s undistorted radius a and pressures
on the capillary scale γ /a, the shape of the free boundary Z = H (X) (measuring
X along and Z normal to the wall) is determined by the Young–Laplace equation
Pd −BH = κ , where the constant Pd is the static internal pressure, B the Bond number
and κ = ±HXX/(1 + H 2

X)3/2 the curvature, with the sign determined by whether one
considers the upper (−) or lower (+) branch of the curve. The base of the drop
makes contact with the wall, and we take the contact angle to be zero, so that HX =0
where H =0; we also impose the symmetry condition HX(0) = 0. To determine Pd , we
impose the constraint that the drop has fixed area π; Pd is also the drop curvature at
the wall where H = 0. The Young–Laplace equation may be integrated once to give
PdH − 1

2
BH 2 = 1 ∓ (1 + H 2

X)−1/2. If Hd is the maximum height of the drop then

Pd = (2/Hd) + 1
2
BHd. (2.1)
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Figure 1. (a) Shapes of a static sessile drop for B = 0.001, 0.1, 0.5, 1, 2, 4, 8. (b) The internal
drop pressure Pd , the contact length between drop and wall Ld , and the maximum drop
height Hd are plotted versus B . Solid lines show asymptotes (2.3) for B � 1; dashed lines show
asymptotes for B � 1.

The weight of the drop, πB , is supported by hydrostatic stresses along its flat base.
There is no contribution to the vertical force balance arising from surface tension
because the contact angle is zero. If the length of contact between the drop base and
the wall is Ld , then

PdLd = πB. (2.2)

A unique shape may be computed for each value of B , as shown in figure 1. (In
order to avoid using the multi-valued function H (X) it is computationally convenient
to represent the drop in intrinsic coordinates, see O’Brien 1991). For B � 1, gravity
dominates surface tension and the drop is flattened against the wall. In this limit κ is
small when H = Hd and therefore Pd ≈ BHd , so that

Pd ≈ 2B1/2, Ld ≈ 1
2
πB1/2, Hd ≈ 2B−1/2 (2.3)

(as shown in figure 1b). For B � 1 the drop is near-circular, and Pd ≈ 1 + 3
2
B ,

Ld ≈ πB − 3
2
πB2 and Hd ≈ 2−B . Notice that, for all Bond numbers, Pd ∼ H −1

d (where
∼ denotes ‘scales like’). Although our analysis is valid when B is of order unity, we
do not have closed-form expressions for Pd , Ld and Hd in this case; computed values
are shown in figure 1(b).

2.2. A sedimenting drop at low capillary number

Suppose now that the drop sediments steadily down a plane wall inclined at an angle
α to the horizontal. Gravity causes the drop to move relative to the wall with centre of
mass speed U� = γU/µ to be determined, where µ is the viscosity of the suspending
fluid. The non-dimensional velocity U has the significance of a capillary number.

Because U = 0 when α = 0, we may consider the parameter regime α � 1 in which
U remains small and the fluid stresses on the outer part of the drop are weak. If, in
addition, pressures associated with the internal flow are small compared with Pd , then
the static balance is maintained. The drop shape is thus as described in § 2.1, except
that the flat spot that was in contact with the wall becomes the lower drop boundary.
In general we anticipate that the drop rests on a lubricating film of thickness ε � 1 to
be determined (figure 2). The thickness of this film controls the rate at which external
fluid can enter the gap between the wall and the drop and therefore is related to U .
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Figure 2. Sketch of a drop sedimenting down an inclined wall in a frame of reference fixed
to the moving drop, showing ‘outer’ and ‘inner’ regions and lengths Hd , Ld , ε and δ.

In general, the drop moves by a combination of sliding, slipping, rolling or tank-
treading (the precise meanings of these terms in the present context are defined in
§ 2.6 below) so that a typical dimensionless internal fluid velocity is V . The dynamic
problem is controlled by three independent dimensionless parameters: the Bond
number B; the wall tilt angle α; and the ratio of internal to external viscosity λ. Our
aim in this and the following section is to obtain scaling estimates for U , V , ε and
the steady drop shape in terms of B , α, and λ. The drop size appears only within the
parameter B; the drop viscosity appears only within the parameter λ.

The external flow around the main body of the drop creates stresses of magnitude
U/Hd (relative to a dimensional stress scale γ /a). Viscous stresses in the drop are no
larger than λV/Hd . Thus viscous stresses are small compared to the static internal
pressure Pd ∼ H −1

d provided that U � 1 and λV � 1. For long thin drops (B � 1) a
stronger condition for the neglect of internal pressure variations is needed, because
a pressure difference λV LdH

−2
d is required between the front and rear to maintain

zero net flux. This pressure is small compared to Pd (see (2.3)) only if λV B � 1.
Therefore the internal and external flows are sufficiently weak to preserve the sessile
shape provided the capillary numbers λV , λBV and U are all much less than unity.
We shall find later, once U and V have been calculated, that for all values of λ these
conditions are satisfied provided B � α−1.

2.3. Governing equations

We choose a frame of reference fixed relative to the drop and (X, Z)-axes parallel
and perpendicular to the wall, as shown in figure 2. The Stokes equations inside the
drop are given in dimensionless form (using a modified pressure that absorbs the
hydrostatic pressure gradient in the external fluid) as

∇ · u = 0, 0 = −∇p + λ∇2u + B(sin α eX − cos α eZ) (2.4)

and for the external fluid

∇ · u = 0, 0 = −∇p + ∇2u. (2.5)
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In addition, we have continuity of u across the drop boundary, and u = (−U, 0) on
Z = 0 and as |X | → ∞. The discontinuity of traction σ · n across the drop interface
Z = H (X), where n is the unit outward normal to the drop, can be written for small
α as

[σ · n] = κn + B(Xα − H )n. (2.6)

Integrating over the drop surface S gives the overall force and torque balances∫
S

σ · n dS = πBαeX − πBeZ,

∫
S

X ∧ (σ · n) dS = 0. (2.7a, b)

The gravity term on the right-hand side of (2.6) is −BH to leading order, as for
a sessile drop; however for B � 1, X scales as B1/2 and H as B−1/2 (see (2.3)), so
that when B ∼ α−1 the static balance no longer applies. We consider only the regime
B � α−1.

For the ‘inner’ film region below the drop (figure 2) we write Z = εz and H = εh.
In 0 � z � h(X) the Stokes equations (2.5) reduce to those of lubrication theory
(0 = −pX + uZZ , 0 = −pZ) with u = −U at z = 0 and

uz|z=h− = λuz|z=h+, u|z=h− = u|z=h+ . (2.8a, b)

2.4. Length and velocity scales

The drop sketched in figure 2, which is representative of many but not all drop shapes
that we consider, has five asymptotic regions: the film below the flat spot which has
the form of a straight-sided channel; the film’s nose and tail where the interfacial
curvature varies rapidly; the flow within the drop; and the external flow over the
main body of the drop. There are four lengthscales, all in general different: (i) the
length Ld of the flat spot; (ii) the drop height Hd; (iii) the thickness ε of the film;
and (iv) the lengthscale δ of the nose and tail.

Provided the drop has a distinct flat spot, the flux in the film is controlled by
the nose region (Landau & Levich 1942; Bretherton 1961) where the drop curvature
changes by H −1

d . Because the leading-order curvature of the boundary is HXX, the
lengths of the nose and tail must scale as δ ∼ (εHd)

1/2. Pressure variations p in
the external fluid arising from surface tension in the nose and tail regions have
magnitude H −1

d . The corresponding pressure gradients drive a steady flux that scales
as Q ∼ H 3pX ∼ (ε5/H 3

d )1/2, so that the sliding speed scales as

U ∼ (ε/Hd)
3/2. (2.9)

These scaling estimates cease to be appropriate if the distinct flat spot disappears. We
show later that this occurs only for B � α.

2.5. Force and energy balances

As indicated in figure 1(a), for large B a sessile drop has a pancake shape; for small
B it has a small but distinct flat spot at its base. If, when the drop moves, the nose
and tail regions shown in figure 2 merge, we can identify a third possibility, arising
for very small B , namely a circular drop with no identifiable flat spot. These three
possibilities are sketched in figure 3 and are denoted P, F and C respectively.

There are two candidates for the force required to support the weight normal to
the wall, πB . One is the pressure Pd below the flat spot. In that case, the normal force
balance is simply the static balance (2.2). A second possibility is the dynamic pressure
arising from motion in the film. We will show that this is the case when B � α and the
nose and tail overlap (case C, figure 3). The two effects are comparable when B ∼ α.
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Figure 3. Sketch of the P (pancake), F (flat spot), and C (circular) drop shapes. The
notation I, II, III indicates areas of principal energy dissipation.

There are also two candidates for balancing the weight tangential to the wall, πBα

(see (2.7a)). For large λ, shear stresses in the film support the weight. For small λ,
the weight is balanced by a net pressure force resulting from the difference in shape
between the nose and tail. We will show that the viscous drag on the outer drop
surface is negligible provided B � α−1.

As the drop moves, gravitational potential energy is dissipated at rate UBα in one
or more of three regions shown in figure 3: region I is the film; region II is the
drop interior; and region III is the film nose and tail. The scaling argument in § 3
below shows how dissipation in each region (I, II, III) dominates in some part of
(B, λ)-parameter space. To aid the discussion to follow, a summary for fixed α � 1 is
sketched in figure 4 with the corresponding scalings given in table 1. All of the scalings
are justified in detail in later sections. Each region in the diagram is labelled by both a
letter corresponding to the drop shape: P (a pancake, 1 � B � α−1); F (near-circular,
but with a flat-spot, α � B � 1); or C (near-circular with no flat-spot, B � α � 1)
and also with I, II or III corresponding to the principal region of dissipation. For a
near-circular drop (case C), there is a single scaling for U and ε; the subscripts 1, 2,
3, 4 in table 1 correspond to different scalings for the internal drop speed V .

2.6. Drop kinematics: sliding, slipping and rolling

In all circumstances the internal fluid velocity V cannot exceed U . For λ→ ∞,
no internal motion is possible and the drop moves as a solid body. Because the
drop is never perfectly circular, the only possible motion has V = 0; we term this
motion sliding. In that case the boundary condition (2.8b) reduces at leading order to
u = 0 on z = h(X)−. As λ is reduced, internal motion becomes possible. We identify
the lower limit for sliding as the smallest magnitude of λ for which u =0 can be
applied in a leading-order asymptotic approximation. In figure 4, regions CI1,2,3, FI
and PI all meet this defintion of sliding.

At the opposite extreme, if λ= 0 the internal flow generates no stress and therefore
has no dynamic effect on the film. In this case V is comparable with U and the
boundary condition (2.8a) becomes (at leading order) uz = 0 on z = h(X)−. We term a
motion slipping if this zero shear stress condition can be applied. In figure 4, regions
CI4, FIII2, PIII and PII2 correspond to slipping.

As λ is increased from zero, the slipping condition first fails in the nose and tail
regions where velocity variations of magnitude U over a length δ generate stresses
within the drop of magnitude λU/δ. Slipping occurs only when these stresses are
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Figure 4. Sketch of (B, λ)-parameter space with α � 1. In regions C the drop is near-circular
without a flat spot; in regions F it has a flat spot on its base; in regions P the drop is
pancake-shaped. The principal location for energy dissipation is the film for regions labelled I;
internally for regions labelled II; and in the nose and tail of the film for regions labelled III.
Solid lines delimit different asymptotic behaviours; the dashed line defines the upper limit of
slipping where the interface rigidity λ̃= O(1).

small compared with the shear stress in the film, U/ε. Thus the upper asymptotic
limit for slipping is given by λ= δ/ε ∼ (Hd/ε)

1/2. The group λ̃= λ(ε/Hd)
1/2 is the

‘interface rigidity’ (Davis, Schonberg & Rallison 1989) for the nose and tail; if it is
small the boundary remains mobile and stress-free, but if large, velocity variations
are suppressed and the interface moves with a uniform velocity. Perhaps surprisingly,
the interface rigidity plays only a minor role in this problem. When λ̃ = O(1), the
internal flow affects the nose and therefore modifies the thickness of the film and the
drop speed, but only by a numerical factor (Hodges et al. 2004). More important is
that for intermediate λ (sometimes larger and sometimes smaller than λ̃) an internal
flow throughout the drop is established with V ∼ U . Such a flow can and does affect
the scalings of the force balance and drop speed. The internal motion takes the form
of tank-treading, where the internal velocity V is uniform over the flat spot if the
drop is pancake-shaped (figure 5b), or rolling, consisting of a solid-body rotation with
angular velocity V , together with an asymptotically smaller perturbation flow, if the
drop is near-circular (case C, figure 3 or F, figure 5a).
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Region Motion ε Ld δ U V p

PI Sliding B−1/2α2 B1/2 B−1/2α α3 α/λ B1/2

PII1 Tank B−1/2(α/λ)2/3 B1/2 B−1/2(α/λ)1/3 α/λ α/λ B1/2

PII2 Slipping B−1/2(α/λ)2/3 B1/2 B−1/2(α/λ)1/3 α/λ α/λ B1/2

PIII Slipping B1/2α B1/2 α1/2 (Bα)3/2 (Bα)3/2 B1/2

FI Sliding α2 B α α3 α/Bλ 1
FII Rolling (α/Bλ)2/3 B (α/Bλ)1/3 α/Bλ α/Bλ 1
FIII1 Rolling Bα B (Bα)1/2 (Bα)3/2 (Bα)3/2 1
FIII2 Slipping Bα B (Bα)1/2 (Bα)3/2 (Bα)3/2 1
CI1 Sliding (Bα2)2/3 0 (Bα2)1/3 (B4α5)1/3 (B/α)2/3/λ (B/α)1/3

CI2 Slide/Roll (Bα2)2/3 0 (Bα2)1/3 (B4α5)1/3 B2α (B/α)1/3

CI3 Sliding (Bα2)2/3 0 (Bα2)1/3 (B4α5)1/3 Bα/λ (B/α)1/3

CI4 Slipping (Bα2)2/3 0 (Bα2)1/3 (B4α5)1/3 (B4α5)1/3 (B/α)1/3

Table 1. Scalings for film thickness, ε, length of the flat spot, Ld , length of the nose and tail
regions, δ, drop speed, U , internal fluid velocity, V , and pressure below the drop, p. Lengths
are scaled on a, velocities on γ /µ and pressures on γ /a. Region CI2 is labelled both sliding
and rolling because the drop rolls with V � U .
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Figure 5. Sketch showing the internal flow for (a) rolling (case F) and
(b) tank-treading (case P).

As noted in table 1, there are circumstances (case CI2) where a near-circular drop
rolls with angular velocity much smaller than U , so that it also meets the definition
of sliding; rolling and sliding are not mutually exclusive.

3. Two-dimensional drops: scalings
We now provide detailed justification for the scalings summarized in table 1 and

figure 4. The scalings here underpin the formal derivations of numerical coefficients
in § 4 below.

3.1. Near-circular drop with a flat spot: cases FI, FII, FIII: α � B � 1

For α � B � 1, the drop is almost circular, with a flat spot of length B . The nose
and tail have lengths δ ∼ ε1/2 that are small compared with the flat spot. The internal
motion is solid-body rotation with angular velocity V , but the O(B) deformation
of the circular shape gives rise to perturbation velocities of magnitude BV in the
main body of the drop to meet u · n = 0 on the drop boundary. This perturbation
flow generates internal stresses of magnitude λBV in the main body of the drop,
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larger stresses of magnitude λV in a region of size B above the flat spot, and even
larger stresses λV B/δ above the nose and tail (figure 5a). The rate of viscous energy
dissipation in each of these three regions is λB2V 2.

3.1.1. Region FI: λ� (Bα2)−1

A very viscous drop (λ → ∞) slides with negligible internal motion. Its weight
normal to the wall, πB , is supported by the pressure Pd in the film. The Couette
flow in the film gives stresses of size U/ε over the flat spot of length B that support
the down-slope weight, πBα. From (2.9), U ∼ ε3/2 so U ∼ α3 and ε ∼ α2. The sliding
speed and film thickness are thus independent of both the internal viscosity and the
Bond number.

Shear stresses over the flat spot create a torque of magnitude Bα about the drop
centre. This torque is balanced by a higher-order perturbation pressure in the film
of magnitude α/B � 1 associated with a perturbation velocity having magnitude
α5/B2 � U .

The fluid inside the drop is subjected to tangential tractions of magnitude α and
larger normal tractions of magnitude α/B , giving an internal flow of magnitude
V ∼ α/Bλ. Viscous dissipation is largest in the film, so that the leading-order energy
balance is UBα ∼ (U/ε)2εB . Internal dissipation scales as λV 2B2 ∼ α2/λ and is
comparable with that in the film when λ∼ (Bα2)−1. At the same value of λ, the
rolling speed V becomes comparable with the sliding speed U , reducing the shear
traction in the film. Thus the lower boundary of region FI is at λ∼ (Bα2)−1, as shown
in figure 4.

3.1.2. Region FII: (B5α)−1/2 � λ� (Bα2)−1

If λ� (Bα2)−1, energy is lost predominantly in the drop interior, the speeds U and
V are comparable, and the energy balance UBα ∼ λV 2B2 yields V ∼ U ∼ α/(Bλ). It
follows from (2.9) that ε ∼ (α/Bλ)2/3. This result is the two-dimensional equivalent
of Mahadevan & Pomeau’s (1999) scalings for a three-dimensional rolling drop
that wets an inclined wall: the velocity of the rolling drop is independent of the
viscosity of the outer fluid and, remarkably, the drop moves down the wall at a speed
inversely proportional to the gravitational acceleration g. The reason is that although
the gravitational driving force increases with B (scaling as B), the internal viscous
dissipation increases even faster (scaling as B2).

3.1.3. Region FIII: λ� (B5α)−1/2

If the drop is inviscid (λ= 0) it slips and the flow profile in the film is uniform. Shear
stresses in the film cannot support the down-slope weight, but the different pressure
distributions corresponding to the different shapes of the nose and tail provide the
tangential force. The pressure in the nose and tail is of order unity, their lengths scale
as ε1/2, and the down-slope component of the surface normal also scales as ε1/2. The
force balance is therefore ε ∼ Bα. It follows from (2.9) that U and V scale as (Bα)3/2.
In this case dissipation is greatest in the nose and tail and therefore the energy
balance is UBα ∼ (U/ε)2δε. We show in § 4.2.2 below that in these circumstances a
drop experiences no net couple: the pressure force on the drop has components both
tangential and normal to the wall, and the resulting torques are precisely equal and
opposite.

As λ is increased from zero, the interface rigidity λε1/2 of the nose and tail becomes
order unity when λ∼ (Bα)−1/2. At this point slipping ceases although the scalings
are unaffected. If λ is increased further, internal dissipation λV 2B2 increases; when
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λ ∼ (B5α)−1/2, internal dissipation dominates and we enter region FII, as shown in
figure 4.

3.2. Pancake drops: cases PI, PII, PIII: 1 � B � α−1

When B � 1, the drop length Ld ∼ B1/2 and height Hd ∼ B−1/2 (see (2.3)). The length
of the nose and tail is δ ∼ ε1/2B−1/4, and therefore (2.9) implies that U ∼ ε3/2B3/4.
The static description given in § 2.1 breaks down when B becomes as large as α−1 for
two reasons. First, the fore–aft-symmetric sessile drop shape is no longer the static
equilibrium (see (2.7a)); this constraint applies for all λ. Second, the internal capillary
number λBV (see § 2.2) becomes comparable with unity; this constraint (it turns out)
applies in regions PI and PII, but not in PIII.

3.2.1. Region PI: λ� α−2

A very viscous pancake-shaped drop slides with negligible internal motion and
its weight normal to the wall is supported by the pressure Pd = O(B1/2) in the film.
The flow in the film gives tangential stresses of size U/ε acting over a length B1/2

that support the down-slope weight, πBα. From (2.9) it follows that U ∼ α3 and
ε ∼ B−1/2α2. This scaling for U is the same as that in region FI but the film thickness
is a factor B−1/2 smaller.

If the condition λ→ ∞ is relaxed but λ remains large, a slow internal tank-treading
V is generated. The internal stress has magnitude λB1/2V , so V scales as α/λ. Energy
is lost predominantly to dissipation in the film.

When λ∼ α−2, the velocities U and V become comparable and dissipation in the
interior, of magnitude λV 2B , becomes comparable with that in the film. The shear
rate in the film (U − V )ε−1 is reduced and although shear stresses along the drop
base still support the tangential component of the weight, the scalings change. This
provides the lower limit on λ for region PI.

3.2.2. Region PII: (B3α)−1/2 � λ� α−2

If λ� α−2, the drop tank-treads and dissipation is largest inside the drop.
Shear stresses in the film drive a flow inside the drop with V ∼ U . The energy
balance UBα ∼ λV 2B yields V ∼ U ∼ α/λ. From (2.9), the thickness of the film is
ε ∼ B−1/2(α/λ)2/3. The velocity of a tank-treading pancake drop is independent of
both B and the viscosity of the outer fluid (cf. Mahadevan & Pomeau 1999).

3.2.3. Region PIII: λ� (B3α)−1/2

If the drop is inviscid it slips, the pressure in the nose and tail provides the tangential
force δ(ε/δ)B1/2 ∼ Bα and so the film has thickness ε ∼ B1/2α. It follows from (2.9)
that U and V scale as (Bα)3/2. The torques generated by the pressure in the nose and
tail balance exactly.

Dissipation is largest in the nose and tail, giving an energy balance UBα ∼ (U/ε)2δε.
As λ is increased past (B3α)−1/2 internal dissipation dominates and we enter region
PII, as shown in figure 4. Surprisingly, the region where the slip boundary condition
is appropriate overlaps PII because the interface rigidity of the nose and tail does
not become of order unity until λ∼ α−1/2. The thickness of the film in PII2 therefore
has the same magnitude as that associated with an inviscid bubble. In region PII2

the leading-order velocity profile in the film is uniform, but an additional weak shear
provides the force which supports the down-slope weight.
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3.3. Near-circular drop: cases CI1–CI4: B � α

When B becomes as small as α, the lengths of the nose, tail and flat spot are all
comparable. In cases CI1–CI4, for which B � α, the drop boundary is near-circular
with a single region of deformation with length O(ε1/2). In consequence, the flat-spot
description of the shape is no longer appropriate, the velocity scaling (2.9) is no longer
valid, and the weight can no longer be supported by the surface-tension-generated
film pressure.

Because the drop is near-circular, we express its radius as ρ(ψ) = 1 + df (ψ), where
d � 1 is to be determined and ρ and ψ are as defined in figure 5(a). We suppose that
the function f (ψ) is of order unity and f → 0 as |ψ | becomes larger than O(ε1/2).
As the drop moves, there is high pressure in the film in front of the drop and low
pressure behind. To maintain a steady flux in the film, this pressure difference must
scale as p1 ∼ Uε−3/2, contributing a net tangential force of size Uε−1/2 that supports
the down-slope weight Bα. Therefore U ∼ Bαε1/2 and p1 ∼ Bαε−1. The net tangential
force due to shear on the drop base cannot exceed Uε−1/2 and this is comparable with,
or smaller than, the pressure force. Thus the estimate is unaffected by the inclusion
of shear and the scaling of U is independent of λ.

The curvature of the boundary is κ = 1 − d(f + fψψ ) + O(d2). This changes by an
amount d/ε over the film, so p1 ∼ d/ε. Comparing with the estimate above, we have
d ∼ Bα.

It might be thought that p1 also supplies the force which supports the weight
normal to the wall. This is not the case because the leading-order pressure is fore–
aft anti-symmetric. Instead, p1 deforms the drop shape against surface tension so
that the upstream side is pushed further from the wall than the downstream side.
This deformation generates a perturbation pressure in the film p2 that supplies
the normal force, as in a slider bearing. The difference in surface displacement
between the front and rear has magnitude d . So the relative change in film thickness
(the perturbation divided by the original thickness) has size d/ε. The corresponding
additional pressure p2 is fore–aft symmetric and has magnitude p2 ∼ (d/ε)p1 ∼ (d/ε)2,
giving rise to a normal force of size (Bα)2ε−3/2 that balances the weight πB . It
follows that ε ∼ (Bα2)2/3, U ∼ (B4α5)1/3, as given in table 1 and, correspondingly,
p1 ∼ d/ε ∼ (B/α)1/3 and p2 ∼ (B/α)2/3.

It remains to determine the magnitude V of the flow inside the drop. In two
dimensions this proves to depend on λ in a surprisingly complicated way; the
corresponding result for a near-sphere is comparatively simple (see § 7.2.1 below).

A near-circular drop rolls with angular velocity V . Perturbations to this motion
arise for three reasons. First, the O(B) distortion from a perfect circle gives rise to
a perturbation flow of magnitude BV everywhere inside the drop. Second, and more
important, there is a perturbation flow with magnitude larger than BV (but smaller
than V ), caused by the deformation of the base. Because the normal is n = er −dfψ eψ ,

this velocity has magnitude V dε−1/2 in order to meet the condition u · n = 0, giving
rise to internal normal stresses of magnitude λV d ε−1 ∼ λV (B/α)1/3 near the base.
Third, shear stresses are imposed by the film on the base. The internal velocity varies
on a length-scale ε1/2, so (U − V )/ε ∼ λV/ε1/2. Thus, the internal shear-driven velocity
V has magnitude U/λε1/2, or U if this is smaller, with a transition between these
two behaviours where the interface rigidity is of order unity, i.e. when λ∼ ε−1/2 ∼
(Bα2)−1/3.

The scaling for V depends upon whether it is the drop rolling velocity or the
internal shear-driven flow that is larger.
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In the solid-body limit, the shear-driven flow is negligible and the rolling speed
may be estimated by a couple balance. For a rigid circular cylinder that rotates
with angular velocity V at a distance ε � 1 from a stationary wall, the couple on
the cylinder scales as V/ε1/2. Remarkably, if the rigid cylinder translates relative
to a wall with velocity U but does not rotate, then it experiences no net couple
(Jeffrey & Onishi 1981); it is this feature that makes the two-dimensional problem
special. The drop is a rigid circular cylinder at leading order, so the leading-order
flow having pressure p1 generates no net couple. Furthermore, symmetry implies
that the perturbation flow with pressure p2 also exerts no net couple and nor does
the cross-term that arises from p1 and the leading-order shape change. Therefore it
is perturbations of size p2d/ε ∼ B/α that provide the leading-order couple on the
drop, having magnitude (B/α)ε1/2ε1/2 ∼ B5/3α1/3. There are also third-order pressure
corrections p3 ∼ B/α, but these exert no couple about the drop centre because the
leading-order shape is circular. If internal stresses are negligible, this torque causes
the drop to rotate with small angular velocity V ∼ ε1/2B5/3α1/3 ∼ B2α � U .

There are two reasons for modifying this estimate. If λ is large but not infinite,
internal stresses become important, while if λ is small, the internal shear-driven flow
becomes larger. We consider these possibilities in turn.

For λ→ ∞ the drop slides. The magnitude of the internal normal stress at the drop
boundary is λV (B/α)1/3, and this contributes to the couple balance and inhibits rolling
when it is comparable with the normal stress p3 in the film, i.e. when V ∼ (B/α)2/3/λ.
As λ is reduced, V increases from zero until V ∼ B2α. At this point we enter the
slow-rolling region discussed above. The transition takes place at λ∼ (B4α5)−1/3 and
provides the boundary between regions CI1 (sliding) and CI2 (sliding with slow
rolling) as shown in figure 4. For yet smaller λ, the internal shear-driven velocity
V ∼ U/λε1/2 ∼ B2α becomes comparable with the rolling velocity . This occurs when
λ∼ B−1. Finally, if λ� (Bα2)−1/3, the drop slips and the film shear stress drives a
passive internal flow of magnitude V ∼ U once again independent of λ.

In summary, on reducing λ from infinity, the internal flow velocity initially increases
from zero (region CI1), then is independent of λ when the drop is rolling slowly
(region CI2), increases again when the flow is shear driven (region CI3), and becomes
independent of λ again when the drop is sufficiently inviscid (region CI4). An
analogous double effect due to the viscosity ratio λ is seen for an infinitely long
thread of fluid surrounded by a film in a cylindrical pipe (Hammond 1982): for large
values of λ normal stresses are coupled and control the flow; for small values of λ it
is the tangential stresses that drive the flow.

3.3.1. Extension to finite wall slopes: α ∼ 1, B � 1.

Although we have derived these near-circular results in the limit α � 1, they remain
valid for α of order unity, provided α is not close to π/2 so that the inclined plane is
vertical. The layer thickness is ε ∼ B−2/3 � 1, and the drop speed U ∼ B−4/3 � 1. The
internal motion, V , scales as B2/3/λ when λ� B−4/3; as B2 when B−1 � λ� B−4/3;
and as B4/3 when λ� B−1/3.

4. Numerical coefficients for two-dimensional drops
Having established the scalings in table 1 and figure 4, we now determine the

numerical coefficients in the leading-order scaling relations. We treat sliding and
slipping motions for which the nose and tail regions do (§ 4.1) or do not (§ 4.2)
overlap, near-circular drops (§ 4.3), tank-treading pancake-shaped drops (§ 4.4) and
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rolling and slipping motions with a flat spot (§ 4.5). The only substantial region of
parameter space that we do not treat in any detail is FII, since the entire internal flow
within the drop needs to be computed in this case. Our analysis includes transitional
behaviour at the boundaries between all regions outside FII, with the exception of the
boundaries CI3/CI4 and CI2/FIII1. Numerical coefficients are summarized in table 2
in § 5 below.

4.1. Sliding and slipping drops with overlapping nose and tail regions

For sliding and slipping, the internal flow need not be calculated: we apply a no-slip or
no-stress boundary condition for the film as appropriate. We start by examining such
solutions here numerically, allowing the nose and tail regions to overlap, capturing
the transitional regions CI1/FI and CI4/FIII2 for which B ∼ α.

For sliding, the lubrication equations give the flow in the film as

u = 1
2
pX(Z2 − HZ) + (U/H )(Z − H ) for 0 � Z � H (X), (4.1)

so that u =0 on Z = H (X). Similarly, for slipping u = 1
2
pX(Z2 − 2HZ) − U , so that

uZ = 0 on Z = H (X). The constant flux may be written in either case as

Q = − 1
3
(1 + χ)−2pXH 3 − (1 + χ)−1UH (4.2)

where χ = 1 for sliding and χ =0 for slipping.
The pressure in the film is set by the interfacial curvature, so Pd − p =HXX. In

order to match to the outer sessile drop shape we must have

H ∼ 1
2
Pd(X ∓ Ld)

2 as X → ±∞. (4.3)

The normal force balance is then the static balance (2.7)∫ ∞

−∞
(Pd − HXX) dX = πB. (4.4)

The weight tangential to the wall is supported by pressure and shear stresses∫ ∞

−∞
(Pd − HXX)HX dX +

∫ ∞

−∞
uZ|Z=H dX = πBα. (4.5)

For both sliding and slipping, this may be written

1

1 + χ

[
PdH − 1

2
H 2

X

]∞
−∞ + χ

∫ ∞

−∞
UH −1 dX = πBα. (4.6)

Using the scaling estimates given in table 1, we write U = α3U, Q =P −1
d α5Q and

H (X) = −(1 + χ)(Q/U )G(ξ ), X = −((1 + χ)2/3U 4)1/3Qξ. (4.7)

The film flux equation (4.2) becomes the Landau–Levich equation

G − G3Gξξξ = 1. (4.8a)

The far-field behaviour is quadratic, and so

G ∼
{

1
2
N2ξ

2 + N1ξ + N0 + O(ξ−1) as ξ → ∞ (nose)

1
2
T2ξ

2 + T1ξ + T0 + O(ξ−1) as ξ → −∞ (tail).
(4.8b)

The matching condition (4.3) gives

N2 = T2 = −((1 + χ)/9)1/3QU−5/3, N1 = − T1 = − 1
2
π(3(1 + χ))−1/3U−1/3(B/α), (4.8c)
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and the force balance (4.6) becomes

− Q
U (N0 − T0) +

χ

2

(
4

3

)1/3

U2/3Γ = π

(
B

α

)
where Γ =

∫ ∞

−∞
G(ξ )−1 dξ. (4.8d)

We seek U and G(ξ ) as functions of B/α.

4.1.1. Numerical results for CI1/FI and CI4/FIII2

The Landau–Levich equation (4.8a) was solved numerically by shooting to ξ → ±∞
from ξ = ξ0, with initial conditions Gξ = 0 and prescribed values of G and Gξξ . The
unknown G and Gξξ at ξ = ξ0 were determined using a Newton–Raphson method
to satisfy the boundary conditions N2 = T2 and N1 = −T1 for each ξ0. We were unable
to find solutions for ξ0 < −5.8 using this method because the solution is extremely
sensitive to the initial value of G. We show in figure 6(a) the variation of N2, N1, N0−T0

and Γ with ξ0. Typical pressure distributions in the film are shown in figure 6(b). As ξ0

is decreased, the pressure changes from that of a region-C drop (solid line) with near
fore–aft symmetry towards a region-F drop (dashed lines) with a constant-pressure
plateau below the flat spot. Equations (4.8c, d) determine B/α, U and Q in terms of
ξ0, and hence give U in terms of B/α.

For sliding (χ = 1), U is plotted versus B/α in figure 7. For B/α � 1 the result
agrees with the asymptote U = 2−8/3(B4α5)1/3 derived below (see (4.29)); the sliding
speed is within 1% of this asymptote when B/α < 0.001. For a drop with a distinct
flat spot (B/α � 1, region FI), U should reach a constant value as B/α → ∞ (see (4.12)
below). It is evident from figure 7 that the numerical scheme broke down before U
levels off, because we could not suppress exponentially growing terms over the flat
base. As shown in figure 6(b) for ξ0 = −5.8, the nose and tail are still not completely
separated by a constant-pressure region, so the numerical solution shown in figure 7
does not approach its flat-spot limit for B/α → ∞. Nevertheless a numerical fit to
the data in figure 6(a) indicates that as ξ0 → −∞,

Γ ∼ −2ξ0 + 3.7, N1 ∼ −0.7ξ0 − 0.8, N2 → 0.6, N0 − T0 → 3.6, (4.9)

giving the estimate U ≈ 9.3 as B/α → ∞, in fair agreement with the asymptote U = 9.57
(see § 4.2 below). Extrapolation suggests that the sliding speed is within 10% of this
asymptotic limit only for B/α � 400.

A graph of U versus B/α for slipping (χ = 0) is also plotted in figure 7. The results
agree with the asymptotes U = 0.497(Bα)3/2 for B/α � 1 (see (4.15) below), and
U = 2−5/3(B4α5)1/3 for B/α � 1 (see (4.30) below). The sliding speed is within 1% of
these limits when B/α � 4 (region FIII2) and when B/α � 0.0001 (region CI4).

4.2. Sliding and slipping drops with a flat spot

If the drop has a distinct flat spot, then the nose and tail may be considered separately.
Below the flat spot the film has uniform thickness ε, the pressure is uniform and so is
the flux Q = −εU/(1 + χ). The flux conservation equation (4.2) for the nose and tail
becomes

−(1 + χ)−1εU = 1
3
(1 + χ)−2HXXXH 3 − (1 + χ)−1UH. (4.10)

For the nose we write H = εG(ξ ), X = 1
2
Ld − ε(3(1 + χ)U )−1/3ξ and again obtain the

Landau–Levich equation (4.8a). The boundary conditions are now

G → 1 as ξ → −∞, G → 1
2
N2ξ

2 + N0 + O(ξ−1) as ξ → ∞. (4.11)

There is a unique solution satisfying these conditions (Bretherton 1961) for which
N2 = N2 ≈ 0.64304, N0 = N0 ≈ 2.89964 (Jensen 2000). The matching condition (4.3)
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Figure 6. (a) Numerical solutions of (4.8a–d). Solid lines show the approximations in (4.9).
(b) The pressure, −Gξξ (ξ ), under a sliding or slipping drop for ξ0 = −1 (solid line), −1.5, −2,
−3, −4, −5, −5.8, obtained from (4.8a–d). The maximum pressure increases as ξ0 is reduced.

requires εPd(3(1 + χ)U )−2/3 = N2. This result is a Bretherton relation between drop
speed and film thickness for a drop having nose curvature Pd . The two cases χ =0,
χ = 1 correspond respectively to an inviscid drop and to an infinitely viscous drop.
We now use a force balance on the drop to determine U and ε.

4.2.1. Sliding: regions FI, PI

For sliding, the weight tangential to the wall is supported by shear forces along the
flat spot, where the flow is Couette with u = U (Z/ε − 1). Thus ULd/ε = πBα, giving
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the sliding speed and film thickness as

U = 62N
3

2α
3 ≈ 9.57α3, ε = 62N

3

2α
2/Pd ≈ 9.57α2/Pd. (4.12a, b)

As anticipated, the sliding speed U is independent of B , but the film thickness
decreases with increasing B . In region FI, Pd ≈ 1 in (4.12b). In region PI where B � 1,
Pd ≈ 2B1/2 and therefore

ε = 1
2
62N

3

2B
−1/2α2 ≈ 4.79B−1/2α2. (4.13)

Using numerically computed values of Pd (see figure 1b), (4.12) may also be used to
describe the transition region FI/PI.

4.2.2. Slipping: regions FIII2, PIII

The boundary conditions for the tail are G → 1 as ξ → ∞ and G → 1
2
T2ξ

2 + T0 +

O(1/ξ ) as ξ → −∞. The matching condition (4.3) requires T2 = N2, and in this case
the solution has T0 = T 0 ≈ −0.84529 (Wong, Radke & Morris 1995). The tangential
force balance for slipping (4.8d) reduces to

εPd(N 0 − T 0) = πBα, (4.14)

giving the drop speed and film thickness as

U =
1

3

(
πBα

N2(N0 − T 0)

)3/2

≈ 0.497(Bα)3/2, ε =
πBα

Pd(N0 − T 0)
≈ 0.839

Bα

Pd

. (4.15a, b)

In region FIII2, Pd ≈ 1 in (4.15b). In region PIII where B � 1, Pd ≈ 2B1/2 and
therefore

ε = 1
2
π(N 0 − T 0)

−1B1/2α ≈ 0.419B1/2α. (4.16)

Once again, (4.15) also applies across the transition region FIII2/PIII.
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It is straightforward to check that the couple balance is met by taking moments
about the drop’s centre of mass. Because the base is flat, the uniform pressure Pd ≈ 1
below the flat spot exerts no net torque. The torque exerted by the pressure in the
nose and tail is proportional to

T =

∫
Nose

(1 − hxx)(x − hx) dx +

∫
Tail

(1 − hxx)(x − hx) dx (4.17a)

=
[

1
2
x2 − xhx + 1

2
h2

x

]
Nose

+
[

1
2
x2 − xhx + 1

2
h2

x

]
Tail

. (4.17b)

With boundary conditions h → 1
2
x2 + h0N0, h → h0 as x → ±∞ (for the nose) and

h → h0, h → 1
2
x2 + h0T 0 as x → ±∞ (for the tail), we find T = 0.

4.3. Sliding and slipping near-circular drops: regions CI1–CI4

We now consider near-circular drops for which the nose, tail and flat spot merge, and
apply a perturbation analysis to the lubrication theory of § 4.1. As shown in table 1,
the appropriate scalings are

X = (Bα2)1/3ξ, H (X) = (Bα2)2/3h(ξ ), U = (B4α5)1/3U, Q = B2α3Q. (4.18)

The lubrication equations (4.2) for sliding (χ = 1) and slipping (χ = 0) become

(B/α)1/3Q = − 1
3
(1 + χ)−2pξh

3 − (B/α)1/3(1 + χ)−1Uh. (4.19)

The pressure in the film is 1 − p = hξξ . Because the drop base has no flat spot, the
static normal force balance (2.2) no longer holds. Instead, the leading-order balance
is

(Bα2)1/3

∫ ∞

−∞
p(ξ ) dξ = πB, (4.20a)

and the tangential balance is

(Bα2)2/3

1 + χ
1
2

[
h − 1

2
h2

ξ

]∞
−∞ + χBαU

∫ ∞

−∞
h−1 dξ = πBα. (4.20b)

As described in § 3.3, we set ε ≡ (B/α)1/3 � 1 and write

h(ξ ) = h0(ξ ) + εh1(ξ ) + O(ε2)), p(ξ ) = εp1(ξ ) + ε2p2(ξ ) + O(ε3), (4.21)

where the pressure p1(ξ ) is an odd function of ξ and p2(ξ ) is even. The force balances
become∫ ∞

−∞
p2(ξ ) dξ = π,

1

1 + χ
[h1 − h0ξh1ξ ]

∞
−∞ + χU

∫ ∞

−∞
h−1

0 dξ = π. (4.22a, b)

At leading order, h0ξξ = 1 so that h0 = 1
2
(ξ 2 + ξ

2
), for some constant ξ that fixes

the centre of the circular drop. At O(ε), (4.19) becomes

Q = − 1
3
(1 + χ)−2p1ξh

3
0 − (1 + χ)−1Uh0. (4.23)

There is no net change in p1 from ξ = −∞ to ξ = ∞, so that

Q = − 1
3
ξ

2U(1 + χ)−1 and p1 = − 4(1 + χ)Uξ (ξ 2 + ξ
2
)−2. (4.24)

As expected, p1 is fore–aft anti-symmetric and supplies no contribution to the normal
force. It does however perturb the drop shape, and because p1 = −h1ξξ we find

h1(ξ ) = (2(1 + χ)U/ξ ) tan−1(ξ/ξ ). (4.25)
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Using h0 and h1 in the tangential force balance (4.22b) we obtain

(2Uπ/ξ ) + χU[(2/ξ ) tan−1(ξ/ξ )]∞
−∞ = π, (4.26)

and therefore the sliding speed is U = 1
2
(1 + χ)−1ξ .

To satisfy the normal force balance and determine ξ , we consider O(ε2). The
second-order pressure satisfies the flux equation

− 1
3
(1 + χ)−1p2ξh

3
0 − (1 + χ)−1p1ξh

2
0h1 − Uh1 = 0, (4.27)

and ∫ ∞

−∞
p2(ξ ) dξ = −

∫ ∞

−∞
ξp2ξ dξ =

π

4ξ
3
. (4.28)

Thus the normal force balance (4.20a) gives ξ =2−2/3, U = 2−5/3/(1 + χ) and Q =
− 1

12
(1+χ)−2. The sliding speed and minimum film thickness for a near-circular sliding

drop (cases CI1,2,3) are therefore

U = 2−8/3(B4α5)1/3, ε = 2−7/3(Bα2)2/3, (4.29)

while for a near-circular slipping drop (case CI4),

U = 2−5/3(B4α5)1/3, ε = 2−7/3(Bα2)2/3. (4.30)

Thus, a sliding drop (CI1,2,3) moves half as fast as a slipping drop (CI4). The film
thicknesses are the same.

4.3.1. Extension to finite wall slopes

We noted that in region C the results for small α remain valid for α ∼ 1; the
only changes that are needed to the calculation are the replacement of the tangential
component of the drop weight Bα by B sin α and of the normal component by
B cos α. Then for B � 1 the minimum film thickness and drop speed are

ε = 0.198B2/3 sin2/3 α tan2/3 α, U = 0.315B4/3 sin4/3 α tan1/3 α (4.31a, b)

for slipping (λ� B−1/3). For sliding, (λ� B−1/3), U is a factor 2 smaller and the film
thickness is unchanged.

4.4. Tank-treading pancake drops: regions PI–PIII

For pancake drops (B � 1) of intermediate viscosity, we can calculate the flow inside
the drop as well as that in the film by using lubrication theory.

The flow in the film, away from the nose and tail regions, is u = kZ − U for
0 � Z � ε, where the shear rate k is a constant. The associated shear stress drives an
internal flow. There is no stress on the upper boundary Z = Hd because the capillary
number is small, and zero net flux of fluid inside the drop, so away from the ends the
flow is given as

u = 1
2
(pX/λ)

(
Z2 − 2HdZ + 2

3
H 2

d

)
for ε � Z � Hd = 2B−1/2. (4.32)

Continuity of traction and velocity at the lower boundary Z = ε then give

pX = − 3UBλ

4 + 6B1/2λε
, k =

6UB1/2λ

4 + 6B1/2λε
. (4.33)

The tangential force balance (4.5) is

2B1/2ε(N0 − T 0) + 1
2
πB1/2k = πBα, (4.34)



114 S. R. Hodges, O. E. Jensen and J. M. Rallison

giving the drop speed

U =
(
4 + 6B1/2λε

)(
πBα − 2B1/2ε(N0 − T 0)

)
/(3πBλ). (4.35)

A second relationship between the sliding speed U and film thickness ε is given
by the Bretherton problem determined in the nose. The curvature where the drop
meets the wall is Pd ≈ 2B1/2, and Hodges et al. (2004) give ε = FP −1

d U 2/3 where the
order-unity coefficient F is a function of λ and U having asymptotic behaviour

F ∼




F0 ≡ 32/3N2 ≈ 1.34, λ� U−1/3,

FP ≡ 122/3N2 ≈ 3.37, U−1/3 � λ� U−2/3,

F∞ ≡ 62/3N2 ≈ 2.12, λ� U−2/3.

(4.36)

Combining these results for U and ε, and neglecting a term λB−1U 4/3 that is always
asymptotically small, we find

λU − FλαU 2/3 − 4
3
α + 4

3
F (πB)−1(N0 − T 0)U

2/3 = 0. (4.37)

There are several possible balances in (4.37). For the sliding region (PI), the first and
second terms balance and U = F 3

∞α3, as in (4.12). For the slipping region (PIII), the
third and fourth terms balance and U is as given in (4.15). For the tank-treading
regions (PII1 and PII2), (B

3α)−1/2 � λ� α−2 and U ∼ α/λ. Here the balance is between
the first and third terms so that

U = 4
3
α/λ and ε = 1

2
FB−1/2(4α/3λ)2/3. (4.38)

In this limit, the shear rate in the film is (from (4.33))

k = 3
2
UB1/2λ (4.39)

which is independent of ε; it is controlled entirely by stress levels in the interior.
Because the length of the flat spot is proportional to the drop weight, its speed
is again independent of B . The transition between PII1 and PII2 occurs at λ ∼
α−1/2. Here λU 1/3 is comparable with unity and F changes from F0 to FP , so that
ε ≈ 0.812B−1/2(α/λ)2/3 in region PII2 and ε ≈ 2.04B−1/2(α/λ)2/3 in region PII1. The
transition in film thickness between regions PII1 and PII2 is plotted in figure 8(a),
using the results for F from Hodges et al. (2004).

We may also determine transitional behaviour between other asymptotic regimes
by keeping the relevant terms in (4.37) above. Thus, throughout regions PI and PII1

(keeping the first three terms) we have

λU − FλαU 2/3 − 4
3
α = 0. (4.40)

The coefficient F varies between FP and F∞ across the transition where λU 2/3 is order
unity. Using the approximate result

F ≈ F∞

(
2 + 4λU 2/3F

1 + 4λU 2/3F

)2/3

(4.41)

(Hodges et al. 2004) and rescaling U = Uα3, the speed U satisfies

λα2U − λα2 FU2/3 − 4
3

= 0, with F ≈ F∞

(
2 + 4 λα2 U2/3F

1 + 4 λα2 U2/3F

)2/3

. (4.42)

Therefore U is a function of λα2 only, consistent with table 1, and is plotted in
figure 8(b). Both the speed and film thickness are within 10% of their respective
asymptotic values whenever λα2 � 0.01 (region PII1) or λα2 � 2 (region PI).
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Figure 8. Film thickness and drop speed between regions: (a) PII1 and PII2; (b) PI and
PII1; (c) PIII and PII2; (d) FIII1 and FIII2. The dotted lines show asymptotes as follows:
in (b), (i) U = 4

3
λα2, (ii) U ≈ 9.57, (iii) εB1/2/α2 ≈ 4.08/(λα2)2/3, (iv) εB1/2/α2 ≈ 4.79; in (c),

(i) U ≈ 0.497, (ii) U = 4
3
λ(B3α)1/2, (iii) ε/B1/2α ≈ 0.419, (iv) ε/B1/2α ≈ 1.62/(λ(B3α)1/2)2/3.

In both regions PIII and PII2, λ� U−1/3 so that F = F0. Throughout regions PIII
and PII2 the appropriate balance is (4.37) without its second term. In this case the
rescaled velocity U = U/(Bα)3/2 depends only on λ(B3α)1/2, consistent with table 1,
and satisfies

λ(B3α)1/2U − 4
3

+ 4
3
π−1F0(N0 − T 0)U2/3 = 0. (4.43)

This drop speed U and film thickness are plotted in figure 8(c); both are within
10% of their respective asymptotic values whenever λ(B3α)1/2 � 0.13 (region PIII) or
λ(B3α)1/2 � 20 (region PII2).

4.5. Rolling and slipping flat-spot drop: region FIII

Throughout regions FIII1 and FIII2 the down-slope weight of the drop is supported
by pressure in the nose and tail, as given by equation (4.14). Furthermore, for a
flat-spot drop Pd ≈ 1, and the relationship between the speed and film thickness is
ε = FU 2/3 (Hodges et al. 2004). It follows that the drop speed and film thickness are

U =(πBα
/
F (N0 − T 0))

3/2, ε = πBα/(N 0 − T 0), (4.44)

so the film thickness is independent of λ, given by that for slipping.
The slipping region FIII2 has λ� U−1/3 and therefore F = F0 = 32/3N2. We recover

the result (4.15) for U . On the other hand, for the rolling region FIII1, U−1/3 � λ�
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Region Motion Film thickness ε Drop speed U

PI Sliding 4.79B−1/2α2 9.57α3

PII1 Tank-treading 2.04B−1/2(α/λ)2/3 4α/3λ
PII2 Slipping 0.812B−1/2(α/λ)2/3 4α/3λ
PIII Slipping 0.419B1/2α 0.497(Bα)3/2

FI Sliding 9.57α2 9.57α3

FIII1 Rolling 0.839Bα 0.124(Bα)3/2

FIII2 Slipping 0.839Bα 0.497(Bα)3/2

CI1,2,3 Sliding 0.198(Bα2)2/3 0.157(B4α5)1/3

CI4 Slipping 0.198(Bα2)2/3 0.315(B4α5)1/3

Table 2. Asymptotes for film thickness and drop speed for a two-dimensional drop.

U−2/3 and therefore F =FP = 122/3N2 and the drop speed is U = 1
12

(πBα/N 2(N 0 −
T 0))

3/2 ≈ 0.124(Bα)3/2, a factor 4 slower.
The transition between regions FIII1 and FIII2 occurs when λ∼ (Bα)−1/2. Here

λU 1/3 is order unity and F changes between F0 and FP . The drop speed across this
transition may be computed using results from Hodges et al. (2004), as plotted in
figure 8(d).

5. Two-dimensional drops: discussion
We have obtained expressions for the shape, film thickness and sliding speed of

a two-dimensional drop as functions of B , α and λ in all the substantial regions of
parameter space shown in figure 4, with the exception of FII. The asymptotes for
the film thickness and drop speed are summarized in table 2. Furthermore, we have
determined the transitional behaviour between different asymptotic regimes in all but
a couple of cases. In FII energy is dissipated primarily inside the drop and three
regions of disparate size must be taken into account; the flow field must be calculated
throughout the entire drop, the geometry does not reduce to a half-plane. We have
not pursued the boundary-integral calculation in this case.

To interpret these results it is helpful to consider some thought experiments. Suppose
first that the drop size B and the inclination angle α are fixed but that the viscosity
ratio λ is varied. Then a slipping drop (small λ) moves, with speed independent of
λ, faster than a tank-treading or rolling drop (intermediate λ), with speed inversely
proportional to λ. This speed is itself faster than a sliding drop (large λ), where again
the speed becomes independent of λ.

Figure 9 shows schematically how the speed and film thickness vary with increasing
B (i.e. with increasing drop size) and both λ and α fixed as we pass through distinct
regions of parameter space. It is striking that the variation is not always monotonic.
The results can be summarized as follows. As B is increased (so that the relative
strength of gravity is increased), the drop travels faster, except when the drop adopts
a tank-treading or sliding motion for which the speed is independent of B , or when
the drop rolls and then, remarkably, the speed is reduced with B .

Finally, suppose that λ and B are fixed but that α � 1 varies. Then, under all
circumstances, the drop speed and the film thickness are monotically increasing
functions of α — but having, rigorously, a nonlinear behaviour.
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Figure 9. Depending on the size of λ (fixed), there are several ways of moving across phase
space from small B to large B (see figure 4). Four possibilities are represented in the above
sketch showing the scalings (on a logarithmic scale) for (a) speed U and (b) film thickness
ε: (i) all sliding (solid line, λ� α−3); (ii) sliding–rolling–sliding (dotted line, α−2 � λ� α−3);
(iii) slipping–rolling–tank-treading (dotted and dashed line, α−1/2 � λ� α−2); (iv) all slipping
(dashed line, λ� α).

5.1. Comparison with computational studies

DeBisschop et al. (2002) performed a numerical investigation of a periodic train of
buoyant two-dimensional drops rising in an inclined channel. In terms of our variables,
they considered λ= 1, 0.2 <B < 10, a channel with width 2.2 and 0 � α � π/2.
The smallest non-zero value for which explicit results were presented is α = π/9.
Unfortunately, much of their data have α too large for our asymptotic theory to be
applicable because their effective capillary number is large enough for viscous forces
to cause the drop shape to become strongly asymmetric away from the wall, and
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Figure 10. Symbols show drop speed with B = 2.023, λ= 1, as a function of channel inclina-
tion, taken from DeBisschop et al. (2002). Dotted lines show (i) U = 0.4α3/2 and (ii) U =0.3α.

sometimes large enough for no steady state to exist. However, for some parameters
they found a steady drop translation speed with a film of near-uniform thickness
between the drop and the upper channel wall. The film thickness increases with α.
For the lowest value of α = 0.35 and B = 2.023 (in our variables) they obtained a drop
speed of U = 0.089 and a uniform film thickness ε =0.11. (The measured minimum
film thickness 0.08 occurs in the tail and is about 70% of that under the flat spot).
These values of B , α and λ have λ(B3α)1/2 ≈ 1.7 and so set this example on the border
between regions PIII and PII2. As shown in figure 8(c) both the asymptotes for U

and ε are too high, and the best estimate from the figure gives U = 0.16 and ε = 0.14.
We therefore over-predict the drop speed by around a factor 2, while the predicted
film thickness is in better agreement. The discrepancy in U is most likely because the
presence of the opposite wall of the channel in the computations of DeBisschop et al.
increases the viscous drag on the main body of the bubble, slowing it down. Even
so, their predictions of drop speed (reproduced in figure 10) are consistent with the
scalings U ∼ (Bα)3/2 in region PIII (for small α) and U ∼ α/λ in region PII2 (for larger
α), although the coefficients are about a factor 4 smaller than the asymptotic values
in table 2.

DeBisschop et al. also give results for the drop speed and film thickness for α = π/3,
λ=1 and varying B in the range [0.2, 3.03]. The small-B prediction for ε given by
(4.31a) lies within a factor 2 throughout this range for B , and over-predicts the film
thickness by about 50% for the smallest choice for B . The predicted slip velocity
(4.31b) (slipping should be appropriate at the smaller values of B) is similarly too
large, again by a factor about 2. Overall, however, agreement between the asymptotic
predictions and simulations is encouraging.

6. Three-dimensional drops: scalings
We now extend the two-dimensional results to low-capillary-number sedimentation

of three-dimensional drops. Once again, lengths are scaled on the radius a of the
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undistorted drop, pressures on γ /a and speeds on µ/γ . Without going into as
much detail as § § 2 and 3, this Section gives an overview of the scalings governing
three-dimensional drop motion, summarized in figure 12 and table 3 below. First,
however, we recall the shape of a static drop resting on a plane.

6.1. Sessile three-dimensional drop

Consider an axisymmetric drop of volume 4
3
π with shape given in cylindrical polar

coordinates (r, θ, Z) by Z = H (r). It sits on the plane Z = 0. Symmetry implies that at
r = 0, Hr = 0. Hd is again the maximum height. The principal radii of curvature are

κr = ± Hrr(
1 + H 2

r

)3/2
, κθ = ±1

r

Hr(
1 + H 2

r

)1/2
, (6.1)

with signs changing at the turning point of the solution curve, and so the sessile drop
shape is governed by the Young–Laplace equation and volume constraint

Pd − BH = κr + κθ with

∫
drop

rH dr = 2
3
. (6.2)

We take zero contact angle at the wall so that Hr = 0 at H = 0. This condition is
met at r = Ld where Ld is the radius of the flat spot at the base. Note that because
H = κθ = 0 at the wall, the curvature κr at the wall is Pd . The static force balance (2.2)
now becomes PdL

2
d = 4

3
B .

For B � 1 the drop has an axisymmetric pancake shape, with a flat top of height
Hd = Pd/B . On the sides of the pancake, κθ is negligible, and thus the shape there is
governed by the two-dimensional analysis of § 2.1, giving

Pd = 2B1/2, Hd = 2B−1/2, Ld =
√

2
3
B1/4. (6.3)

For B � 1 the drop is near-spherical and at leading order

Pd = 2, Hd = 2, Ld =
√

2
3
B1/2. (6.4)

Mahadavan & Pomeau (1999) give different scalings but their result contains a
typographical error. Rienstra (1990) gives more detailed asymptotic solutions using
intrinsic coordinates. Experimental confirmation of the scalings for Ld in (6.3), (6.4)
is provided by Aussillous & Quéré (2001, 2002).

6.2. Three-dimensional sedimenting drops: lubrication theory

We now suppose that the drop sediments in the X-direction (along θ = 0) with velocity
U . Provided the capillary number is small (requiring (at least) that U � 1), the outer
shape remains that of a sessile drop while the drop sediments, but the drop moves on
a film of thickness of order ε. The film has a circular rim of width δ and circumference
2πLd that takes the place of the two-dimensional nose and tail (as illustrated for a
pancake-shaped drop in figure 11).

Suppose that the sedimenting drop has a distinct flat spot of radius Ld � δ. The
case where these lengths are comparable will be considered later. If the wall lies in
the (X, Y )-plane, and the film thickness is H (X, Y ), then the interfacial curvature is
∇2H , where ∇ ≡ (∂/∂X, ∂/∂Y ). The flow in the film is governed by lubrication theory
giving a steady flux Q in the (X, Y )-plane of the form

Q = β1H
3∇∇2H +β2UH, with ∇ · Q = 0. (6.5)
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Figure 11. Sketch of a three-dimensional pancake drop (B � 1) showing (a) view from
above, (b) view from the side. Also shown are relevant lengthscales (scaled on nominal drop
radius a). The notation I, II, III indicates areas of primary potential energy dissipation.

The O(1) coefficients β1 and β2 depend on λ. The first term arises from surface tension
and is proportional to the gradient of the film curvature, the second is driven by the
motion of the wall. Away from the rim, the ratio of the surface-tension-driven flux to
that due to the motion of the wall scales as (ε/Ld)

3U−1. Provided there is a distinct
flat spot, this ratio is small, and (6.5) gives U · ∇H = 0 and thus H = H (Y ). Thus the
film thickness is approximately uniform from the front to the back of the drop and
the corresponding flows in the film and the drop are unidirectional. In Neitzel &
Dell’Aversana (2002) there is an image of an air film supporting an oil drop showing
a region in which the film thickness is approximately independent of Y , although it
does not extend across the entire base of the drop.

Because the rim has small width, over most of the rim radial derivatives are much
larger than those in the circumferential direction, so the leading-order flux balance
for the rim becomes

(β1H
3Hrrr + β2U cos θH )r = 0. (6.6)

This is a Landau–Levich equation (4.8a) for H , implying that the channel thickness
is fixed locally at the leading edge of the rim where r = Ld and −π/2 < θ < π/2. Thus
for the channel we recover the two-dimensional scalings (cf. (2.9))

ε = HdU
2/3, δ = HdU

1/3. (6.7)

Equivalently in these estimates Hd may be replaced by P −1
d , because this is the

curvature where a sessile drop meets the wall. A further consequence of (6.6) is that
the channel thickness is proportional to cos2/3 θ , and hence H (Y ) ∝ (1 − Y 2/L2

d)
1/3.

Because H is non-uniform, the moving drop can no longer strictly be said to have a
‘flat spot’, although we retain this label. A representative film thickness ε is given by
the value H (0) at the mid-plane.

As discussed by Burgess & Foster (1990) for a drop in a Hele–Shaw cell, these scaling
estimates cease to be valid in the regions of the rim where Y ∼ ±Ld , θ ∼ ±π/2. In these
rim-edge regions the circumferential flux term r−1(β2U sin θh)θ becomes important.
Putting θ = π/2 + θ̂ with θ̂ � 1, the leading-order Reynolds equation for this region
becomes

(β1H
3Hrrr − β2Uθ̂H )r − (β2/Ld)UHθ̂ = 0. (6.8)
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Region Motion ε Ld δ U V p

PI Sliding B−1/2α2 B1/4 B−1/2α α3 α/λ B1/2

PII1 Tank treading B−1/2(α/λ)2/3 B1/4 B−1/2(α/λ)1/3 α/λ α/λ B1/2

PII2 Slipping B−1/2(α/λ)2/3 B1/4 B−1/2(α/λ)1/3 α/λ α/λ B1/2

PIII Slipping B1/4α B1/4 B−1/8α1/2 (B3/4α)3/2 (B3/4α)3/2 B1/2

FI Sliding α2 B1/2 α α3 α/(B1/2λ) 1
FII Rolling (α2/Bλ2)1/3 B1/2 B−1/6(α/λ)1/3 α/(B1/2λ) α/(B1/2λ) 1
FIII1 Rolling B1/2α B1/2 (B1/2α)1/2 (Bα2)3/4 (Bα2)3/4 1
FIII2 Slipping B1/2α B1/2 (B1/2α)1/2 (Bα2)3/4 (Bα2)3/4 1
SI1 Sliding B1/2α/ ln 0 (B1/2α/ ln)1/2 Bα/ ln 1/λ (B1/2 ln /α)1/2

SI2 Rolling B1/2α/ ln 0 (B1/2α/ ln)1/2 Bα/ ln Bα/ ln (B1/2 ln /α)1/2

SI3 Slipping B1/2α/ ln 0 (B1/2α/ ln)1/2 Bα/ ln Bα/ ln (B1/2 ln /α)1/2

Table 3. Scalings for a three-dimensional drop. Lengths are scaled on a, velocities on γ /µ
and pressures on γ /a. For cases SI1,2,3 the abbreviation ln stands for log(B−1α−2).

When all three terms in this equation are comparable, the scalings for the local film
thickness ε̂, rim width δ̂ (satisfying δ̂ ∼ (εHd)

1/2) and angular width θ̂ are

ε̂ = Hd(Hd/Ld)
2/5U 4/5, δ̂ = Hd(Hd/Ld)

1/5U 2/5, θ̂ = (Hd/Ld)
3/5U 1/5. (6.9)

Because the capillary number U is small, the rim-edge region has small angular width,
θ̂ , and the associated film thickness (proportional to U 4/5 rather than U 2/3 elsewhere)
is especially small.

6.3. Scaling estimates

For a three-dimensional drop having Ld � δ, there are thus four asymptotically
distinct regions in which energy dissipation occurs: I, the channel under the flat spot
of the sessile drop; II, the drop interior; III, the main part of the rim; and IV, the
anomalous rim-edge described above (see figure 11).

The total dissipation in the rim-edge (region IV) scales as δ̂(U/ε̂)2ε̂Ld θ̂ =
Ld(Hd/Ld)

2/5U 9/5. The total dissipation elsewhere in the rim scales as δ(U/ε)2εLd =
LdU

5/3. The ratio of these estimates is (Hd/Ld)
2/5U 2/15 and this proves to be

asymptotically small whenever B � α2. This is also the condition that Ld � δ. It
follows that the rim-edge region is dynamically passive: although the film is especially
thin, with high shear rates, the spatial extent of region IV is sufficiently small that the
associated dissipation is negligible. We note in passing however that the dangerously
small power ( 2

15
) of the small capillary number U may imply that our leading-order

estimates are accurate only for unphysically small capillary numbers. We note too
that the smallness of the rim-edge film thickness suggests that surface roughness may
be important in experiments.

With these reservations we conclude that, for B � α2, the (B, λ)-parameter space
for three-dimensional drops may be characterized on exactly the same basis as for
two-dimensional drops, with different asymptotic regions labelled by F or P together
with I, II or III depending upon the principal region of energy dissipation. The only
differences in scaling behaviour are geometrical in character in moving from two to
three dimensions.

The dissipation in the drop interior (region II) scales as λ(V/Hd)
2 ∼ λV 2B for tank

treading (B � 1) and as λ(LdV/Ld)
2L3

d ∼ λV 2B3/2 for rolling (B � 1). Dissipation in
the flat spot (region I) scales as [(U −V )/ε]2εL2

d . Combining these estimates with those
for the film thickness gives the scalings shown in table 3 and the parameter-space
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PII1
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PIII
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SI3

FIII2

FIII1

FIII2

SLIPPING

log λ

B ~ α–4/3B ~ α2

λ ~ α–3

λ ~ α–2

λ ~ (B1/2α2)–1

λ ~ (B9/4α)–1/2

λ ~ (B5/2α)–1/2

λ = λ̃ ~ α–1/2

λ = λ̃
~ (B1/2α)–1/2

λ ~ (Bα)–1

log B

PISI1

SLIDING

FI

Figure 12. Sketch of (B, λ)-space for the three-dimensional drop, corresponding to scaling
estimates given in table 3. In regions S the drop is near-spherical with a single region of
deformation; in regions F the drop is near-spherical with a flattened disk on its base; in
regions P the drop is pancake shaped. Dissipation occurs primarily in the channel in regions
I; internally in regions II; to the fluid in the rim in regions III. The boundaries λ ∼ λ̃ (dashed
line) indicate when the interface rigidity in the rim is of order unity and provide an upper
boundary for slipping. Logarithmic corrections to boundaries between SI1, SI2 and SI3 have
been ignored.

diagram in figure 12. Details are given in Hodges (2002). In particular we find that
one or more of the capillary numbers U, λV and λB3/4V cease to be small whenever
B � α−4/3 so this provides an upper limit on B for our analysis to be appropriate.
As anticipated above, whenever B � α2, the rim and flat-spot lengthscales become
comparable and a more complex three-dimensional flow arises in the film. Scalings
for regions SI1–SI3 are explained separately in § 7.2 below.

7. Numerical coefficients for three-dimensional drops
On recognizing that the channel flow and the rim flow are each two-dimensional,

it is possible to adapt the estimates given in § 4 to provide three-dimensional results.
We treat first regions F and P (§ 7.1) and then S (§ 7.2). The coefficients in the scaling
relations for U and ε are summarized in table 4. We do not discuss FII, which
requires a three-dimensional boundary-integral calculation that is beyond the scope
of this paper, nor do we attempt to treat all the transitions between the dominant
asymptotic domains.
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Region Motion Film thickness ε Drop speed U

PI Sliding 3.54B−1/2α2 6.11α3

PII1 Tank-treading 1.69B−1/2(α/λ)2/3 4α/3λ
PII2 Slipping 0.670B−1/2(α/λ)2/3 4α/3λ
PIII Slipping 0.407B1/4α 0.474(B3/4α)3/2

FI Sliding 3.54α2 6.11α3

FIII1 Rolling 1.026B1/2α 0.119(Bα2)3/4

FIII2 Slipping 0.407B1/2α 0.474(Bα2)3/4

SI1 Sliding 1
4

√
2B1/2α/ ln 5

6
Bα/ ln

SI2 Rolling 1
6

√
2B1/2α/ ln 4

9
Bα/ ln

SI3 Slipping 1
6

√
2B1/2α/ ln 10

9
Bα/ ln

Table 4. Asymptotes for mid-plane film thickness and drop speed for a three-dimensional
drop. Here ln ≡ log(B−1α−2).

7.1. Numerical coefficients for flat-spot and pancake drops

7.1.1. Sliding: regions FI, PI

For sliding, the channel thickness is H (Y ) = F∞U 2/3P −1
d (1−Y 2/L2

d)
1/3, with the coef-

ficient F∞ given by (4.36). The flow in the channel is Couette so that u = U(1 − Z/H )
and the tangential force balance becomes∫ ∫

U

H
r dr dθ = 4

3
πBα. (7.1)

On performing the integration we find that U = kα3 where k = (πF∞/4J )3 and

J ≡
∫ π/2

0
cos4/3 θ dθ ≈ 0.911, so that k ≈ 6.11. As in the corresponding two-dimensional

case, U is independent of B: as the drop weight increases so, in proportion, does
the area of the base and so also the viscous resistance from the channel flow. The
corresponding mid-plane film thickness is

ε = F∞k2/3α2/Pd ≈ 7.08α2/Pd. (7.2)

This varies with drop size, having limiting behaviours in FI and PI shown in table 4.
One may use numerically computed values of the capillary pressure Pd for B = O(1)
in (7.2) to describe behaviour on the FI/PI boundary.

7.1.2. Slipping: regions FIII2, PIII

For slipping, the channel thickness is H (Y ) = F0U
2/3P −1

d (1 − Y 2/L2
d)

1/3 with the
coefficient F0 given by (4.36). In particular near the rim, H = F0U

2/3P −1
d cos2/3 θ . The

force balance (4.14) is now provided by the difference between the X-component of
the pressure force on the front and rear of the rim so that∫ π/2

−π/2

H (N 0 − T 0)PdLd cos θ dθ = 4
3
πBα. (7.3)

We obtain

U =

(
PdB

3

)3/4(
π

F0(N 0 − T 0)K

)3/2

α3/2 and ε =

(
B

3Pd

)1/2
πα

(N 0 − T 0)K
, (7.4)
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where K ≡
∫ π/2

0
cos5/3 θ dθ ≈ 0.841. Limiting expressions for U and ε in PIII and

FIII2 are given in table 4. Once again, since Pd is readily determined numerically for
B = O(1), (7.4) applies also on the FIII2/PIII boundary.

7.1.3. Tank-treading: regions PII1 and PII2

For a tank-treading pancake drop, the tangential component of the weight is
supported by shear stresses in the film, and these are themselves determined by the
shear stress in the drop interior. The near-uniform drop height Hd is 2B−1/2 for
both two-dimensional and axisymmetric drops and the flow in the film and in the
drop interior is unidirectional in both cases. In consequence the thin-film shear-rate
independent of Y is given by (4.39) as 3λUB1/2/2. The corresponding shear stress acts
in the X-direction over the base to give

3
2
λUB1/2πL2

d = 4
3
πBα, (7.5)

and hence U = 4α/3λ, as for a two-dimensional drop. The corresponding channel
thickness at the mid-plane is ε = 1

2
FU 2/3B−1/2, where the coefficient F is F0 for

slipping (region PII2) and FP for tank-treading (region PII1). Limiting expressions for
ε in PII1 and PII2 are given in table 4. The transitional behaviour on PII1/PII2 may
be determined (as in two dimensions, see figure 8a) using the results of Hodges et al.
(2004).

7.1.4. Rolling and slipping drop: region FIII

For a flat-spot drop having Pd ≈ 2, the relationship between the speed and film
thickness is ε = 1

2
FU 2/3. Throughout regions FIII1 and FIII2 the down-slope weight

is supported by pressure in the nose and tail. Thus just as for two-dimensional drops
(§ 4.5), the film thickness is independent of λ, and is therefore given by that for slipping
as calculated above.

Region FIII2 has λ� U−1/3 and therefore F = F0 = 32/3N2. On the other hand, for
the rolling region FIII1, U−1/3 � λ � U−2/3 and therefore F = FP =122/3N2 and so
the drop speed is a factor 4 slower, and the film thickness a factor 42/3 larger, as
shown in table 4.

7.2. Near-spherical drop with no flat spot

Finally, we turn to regions SI1–SI3. The circumference of the rim Ld and its width δ

are comparable when B � α2. Cases S, for which B � α2, correspond to a drop which
is nearly spherical everywhere except for a single region of deformation at its base
with radius ε1/2. We derive scalings in § 7.2.1 (the three-dimensional analogue of § 3.3)
and then compute leading-order coefficients in § 7.2.2 (the analogue of § 4.3).

7.2.1. Scaling estimates

When B � α2, there is a high pressure in the film in front of the drop and a
low pressure behind. To maintain a steady flux, the pressure difference between the
front and rear scales as p1 ∼ U/ε3/2. This pressure contributes a tangential force on
the drop which supports its down-slope weight, Bα. At first sight this appears to
give Bα ∼ (U/ε3/2)ε1/2(ε1/2)2 = U , but this estimate requires amendment because the
integral for the force decays as r−1 and must be truncated as r → ∞ at a dimensionless
distance ε−1. Instead, the tangential force is U log ε−1 and thus U ∼ Bα/ log ε−1. The
contribution to this force from shear over the base is no larger than this estimate and
so the scaling for U is independent of λ. We note that the Stokes drag acting on the
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main body of the drop provides an O(Bα) correction to U and, except for extremely
small values of ε, this is likely to be numerically significant.

As in two dimensions, the pressure p1 is fore–aft anti-symmetric and exerts no net
force in the direction normal to the wall. Instead, it deforms the drop radius by an
amount d = Uε−1/2 against surface tension (so that the relative deformation is U/ε3/2).
The corresponding change in lubrication pressure is fore–aft symmetric and has
magnitude p2 ∼ U 2/ε3. This supports the drop weight so that B ∼ U 2ε−3(ε1/2)2. Thus
ε ∼ B1/2α/ log (B−1α−2), p1 ∼ (B1/2 log (B−1α−2)/α)1/2 and p2 ∼ B1/2 log (B−1α−2)/α.

We now consider the scaling for the internal flow. For λ→ 0 (region SI1), the drop
slips and the flow in the film drives a passive internal flow with magnitude V ∼ U . As λ
increases, the internal fluid resists this stirring and, when the interface rigidity λε1/2 of
the base is of order unity, i.e. when λ∼ (B1/2α/ log (B−1α−2))−1/2, the internal viscosity
no longer permits velocity variations over the base, slipping ceases and the drop rolls
(region SI2). The internal flow is rigid-body rotation together with a perturbation
flow in a region of length ε1/2 near the base. The velocity of the rigid-body rotation
is determined by a couple balance. For very large λ (region SI1), because the drop
is not perfectly spherical it slides with only a sluggish internal motion, V � U . The
perturbation flow near the drop base has magnitude V dε−1/2 which generates internal
stresses of magnitude λV dε−1. Balancing normal stresses at the lower boundary (i.e.
balancing with p1) we find that V ∼ 1/λ.

Table 3 summarizes these scalings. The boundaries between regions SI1 and SI2

(at λ∼ (Bα)−1) and between regions SI2 and SI3 (at λ ∼ (B1/2α)−1/2) are shown in
figure 12 (neglecting logarithmic corrections). We now determine the coefficients in
these scaling relations.

7.2.2. Numerical values

For a drop that is sliding, or rolling with velocity V , the lubrication equations give
the flow in the film in 0 � Z � H as u = 1

2
∇p(Z2 − HZ) + (U − V )(Z/H ) − U , where

u = −U ≡ −UeX on Z = 0 and u = −V ≡ −VeX on Z = H , with U > 0 and
V > 0. For slipping, with uZ = 0 on Z = H , u = 1

2
∇p(Z2 − 2HZ) − U . The flux may

be written in all three cases as

Q = − 1
3
(1 + χ)−2H 3∇p − (1 + χ)−1(U + χV )H (7.6)

where χ = 1 and V = 0 for sliding; χ = 1 and V is determined by a couple balance
for rolling; and χ = 0 for slipping. Reynolds’ equation ∇ · Q = 0 is then

∇ · (H 3∇p) = −3(1 + χ)(U + χV ) · ∇H. (7.7)

The pressure in the film is set by the curvature, so Pd − p = ∇2H , where Pd = 2 to
leading order.

Omitting for the present the anticipated logarithmic correction, the appropriate
scalings are

r =
(
B1/2α

)1/2
ρ, H (r, θ) =

(
B1/2α

)
h(ρ, θ), U = BαU, V = BαV, (7.8)

and setting ε ≡ (B1/2/α)1/2, (7.7) becomes

∇ · (H 3∇p) = −3ε(1 + χ)(U + χV)eX · ∇H, (7.9)

where ∇ is defined with respect to ρ and eX points along θ = 0. These scalings, along
with the self-evident angular dependences, enable us to write

h(ρ, θ) = h0(ρ) + εh1(ρ) cos θ + O(ε2), (7.10a)

p(ρ, θ) = εp1(ρ) cos θ + ε2[p2(ρ) + p′
2(ρ) cos 2θ] + O(ε3). (7.10b)
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At leading-order, ∇2h0 = 2 so that h0 = 1
2
(ρ2 + ρ2), for some constant ρ that fixes

the centre of the spherical drop. Corrections to Pd arising from the constant-volume
constaint in the drop are O(ε2) and may be neglected in what follows.

At O(ε), (7.9) gives

ρ
(
ρh3

0p1ρ

)
ρ

− h3
0p1 = −3(1 + χ)(U + χV)ρ3. (7.11)

The only acceptable decaying solution is (O’Neill & Stewartson 1967)

p1 = 12
5
(1 + χ)(U + χV)ρ(ρ2 + ρ2)−2. (7.12)

Because the leading-order pressure is proportional to cos θ , it supplies no contribution
to the normal force. It perturbs the drop shape, and because p1 cos θ = −∇2(h1 cos θ)
we find

h1 = 3
5
(1 + χ)(U + χV)ρ−1log(1 + ρ2/ρ2). (7.13)

To satisfy the normal force balance we consider O(ε2) terms in (7.9). Only the
term independent of cos 2θ can provide a net force. This second-order pressure p2(ρ)
satisfies (

ρh3
0p2ρ

)
ρ

= − 3
2

(
ρh2

0h1p1ρ

)
ρ

− 3
2
(1 + χ)(U + χV)(ρh1)ρ (7.14)

and p2 is bounded as ρ → 0. The normal force is then

2π

∫ ∞

0

p2ρ dρ = −π

∫ ∞

0

ρ2p2ρ dρ =
6π

25ρ4
(1 + χ)2(U + χV)2 =

4π

3
. (7.15)

It follows that the minimum gap thickness is

ε = 1
2
ρ2B1/2α = (3

√
2/20)(1 + χ)(U + χV)B1/2α. (7.16)

For slipping (χ = 0), there is no shear stress, and the tangential force balance on
the drop gives ∫ ∫

p1h0ρ cos2 θρ dρ dθ =
12πU

5
log ε−1 = 4

3
π. (7.17)

For sliding (χ = 1, V =0), the shear stress on the boundary gives a total tangential
force (O’Neill & Stewartson 1967)∫ ∫ [

p1h0ρ cos2 θ + 1
2
h0

(
p1ρ cos2 θ +

p1

ρ
sin2 θ

)
+

U
h0

]
ρ dρ dθ =

16πU
5

log ε−1 = 4
3
π.

(7.18)
For rolling (χ = 1), the velocity V must be chosen so as to provide no net couple on
the drop. Pressure forces exert no couple about the centre of a spherical drop, and
thus the net couple due to shear forces, which is itself proportional to the total shear
force, must vanish. The shear force is∫ ∫ [

1
2
h0

(
p1ρ cos2 θ +

p1

ρ
sin2 θ

)
+

U − V
h0

]
ρ dρ dθ = 0, (7.19)

giving V = U/4 (Goldman et al. 1967). The tangential force balance is then∫ ∫
p1h0ρ cos2 θρ dρ dθ = 6πU log ε−1 = 4

3
π. (7.20)

The resulting expressions for U and ε for near-spherical slipping, rolling and sliding
drops in cases SI1–SI3 are shown in table 4.
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7.2.3. Extension to finite wall slopes

For regions S the results for small α remain valid for α ∼ 1; the only changes that
are needed to the calculation are the replacement of the tangential component of the
drop weight 4Bα/3 by 4B sin α/3 and of the normal component by 4B cos α/3. For
sliding the relevant parameter range is λ� B−1, for rolling B−1/4 � λ� B−1 and for
slipping λ� B−1/4. Thus for B � 1, the drop speed and minimum film thickness are

U = k1B sin α/ log B−1, ε = k2B
1/2 sin1/2 α tan1/2 α/ log B−1, (7.21)

where k1 ≈ (0.833, 0.444, 1.11) and k2 ≈ (0.353, 0.236, 0.236) for sliding, rolling and
slipping respectively.

8. Three-dimensional drops: discussion
8.1. Experiments

We now consider our results in the light of the small number of available experiments
treating low-Reynolds-number motion of non-wetting drops and bubbles in the
neighbourhood of a gently inclined plane.

Tsao & Koch (1997) measured a drag coefficient CD ≈ 100/Re of a bubble rising
near a plane for Re ≈ 45–200, which in our notation is equivalent to U ≈ (2/75)B sin α.
Although α is not small in their experiments, this is broadly consistent with predictions
in SI3. They report B = O(10−2), which is not small enough to match quantitatively
with (7.21) with k1 ≈ 1.11. This reflects the poor (logarithmic) accuracy of this
prediction and the potential importance of inertia in their experiments.

Richard & Quéré (1999) observed glycerol droplets moving over an inclined super-
hydrophobic fibrous surface in air under the action of gravity. They used a viscous,
nearly non-wetting liquid (with a contact angle close to but less than π). Their results
show that for small drops (with B � 1) the speed decreases with increasing radius
and that for B � 1 the drop velocity U eventually reaches a constant value close to
(4 sin α)/3λ, consistent with moving through parameter space from region FII (where
U ∼ α/(B1/2λ)) to region PII1 (where U ∼ 4α/3λ, as in table 4). There is a difficulty
here, however. Glycerol has viscosity 53 000 times that of air, so in this experiment
λ� α−2, and our scaling argument suggests that a non-wetting drop should slide
(rather than roll) with speed independent of Bond number. In the experiment, the
drop rolls because wetting effects are present, the internal drop viscosity continues
to drive the dynamics, and the upper boundary on region PII1 in figure 12 does not
apply.

Experiments reported in Aussillous & Quéré (2001) and Aussillous (2002), using
high-viscosity droplets coated with hydrophobic powder, also demonstrated a transi-
tion between FII and PII1-type behaviour. They measured U ≈ 3α/2λ for B > 1
(although most of the data lie slightly beneath this estimate). The predicted coefficient
4/3 for region PII1 (table 4) agrees well with the measured data. Again, while we
would expect air to lubricate a non-wetting drop with the viscosity ratios used
experimentally, wetting effects mediated by the rough coating of the drop evidently
extend the range of parameter space in which the PII1 scalings apply. Roughness
effects may explain why, when the experiments were repeated with lower-viscosity
drops (Aussillous 2002), the dependence U ∝ 1/λ was not observed. Preliminary
estimates suggest that for these parameter values the size of the roughness generated
by the particles coating the drop becomes comparable with the thickness of the film.
If roughness elements ‘hold open’ the layer beneath the drop, dissipation in this layer
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Figure 13. Speed of a bubble rising under an inclined plate as a function of scaled bubble
radius B1/2; data reproduced from Aussillous & Quéré (2002). Open, grey and black squares
correspond to α = 0.012, 0.035 and 0.22 respectively. The thin solid lines are straight-line fits of
experimental data provided by Aussillous & Quéré, with the vertical intercept as an adjustable
parameter. The dashed lines show the predictions given in table 4 for all three values of α for
PIII and FIII2, and for α = 0.22 for SI3.

may dominate that within the pancake, giving a further class of scaling behaviour
dependent on the roughness length not explored in this paper.

Aussillous & Quéré (2002) also performed experiments to measure the speed at
which an air bubble surrounded by a viscous fluid moves up a slightly inclined
wall. They provide experimental data corresponding to regions SI3, FIII2 and PIII
(figure 13). Predictions for each of these regions from table 4 are also shown in the
figure. Predictions for region PIII show excellent agreement, particularly for smaller
values of α. (Aussillous & Quéré independently derived the scaling relationship
U ∼ (B3/4α)3/2.) The prediction for region FIII2 for the smallest value of α is
reasonable, but it worsens as α increases and B decreases. For α = 0.22, the largest
value used in the figure, FIII2 spans only a small range of B (α � B1/2 � 1). For
B1/2 � α we enter region SI3: here the prediction in table 4 has only logarithmic
accuracy. The data do not support convincingly our prediction that the speed–radius
curve should exhibit a clear change of slope across B1/2 ∼ α, although they are not
inconsistent with this idea. The evident overlap between the regions SI3 and FIII2

justifies, at least for larger values of α, the use by Aussillous & Quéré (2002) of a
composite approximation (the solid lines fitting the data points) combining a Stokes
drag contribution (region SI3) with a term of the form (Bα2)3/4.

8.2. Conclusions

We have used asymptotic methods to predict the behaviour of non-wetting
drops sedimenting down a gently inclined plane. Restricting attention to low-
capillary-number motion (with B � α−4/3 in three dimensions), for which surface
tension ensures that the drop has a near-static shape everywhere except in the
neighbourhood of the wall, we have shown that a three-dimensional drop exhibits



A viscous drop on an inclined plane 129

eleven asymptotically distinct types of motion (mapped out in figure 12 and table 3).
As the Bond number B increases, the drop changes from being nearly spherical (S),
to having a small but distinct flat spot at its base (F), to being pancake shaped (P).
As the viscosity ratio λ increases, the drop’s motion evolves from inviscid slipping,
through rolling (or, for a pancake, tank-treading) to near-solid sliding. The scaling
for the drop’s speed may be determined by a balance between viscous dissipation
in the lubricating film beneath the drop (I), the drop interior (II) or thin transition
regions at either end of the film (III). The normal force supporting the drop on
the wall is either static capillary pressure (regions F and P) or dynamic viscous
pressure variations (region S). Detailed calculations using a force or couple balance
as appropriate provide explicit leading-order predictions, summarized in table 4, for
ten of the eleven regions in figure 12 (we have omitted detailed treatment of FII, which
awaits a half-plane three-dimensional boundary-integral calculation), along with many
of the borders between these regions. In two dimensions, a twelfth asymptotic region
(CI3) arises because of a peculiarity of two-dimensional flow, namely that a cylinder
translating near a wall experiences zero net torque (Jeffrey & Onishi 1981).

Scalings for regions FII and PII1 were predicted previously by Mahadevan &
Pomeau (1999), and discussed further by Richard & Quéré (1999) and Aussillous &
Quéré (2001). Scalings for regions PIII and FIII2 were identified by Aussillous & Quéré
(2002). To the best of our knowledge, the remaining predictions are new, as are the
coefficients. These were determined by combining a capillary-statics approximation
for the drop with lubrication theory for the thin lubricating film. For pancake-shaped
drops, lubrication theory was used to describe the flow in the drop interior away from
its ends. Coupling of the flow in the film to the flow in the drop is, in some cases,
confined to the transition regions at either end of the film and to adjacent regions
(with O(1) aspect ratio) within the drop. As λ increases through a value λ̃ (shown with
a dashed line on figure 12, the interface in these transition regions changes from being
stress-free (with the drop in slipping motion) to having prescribed tangential velocity
(with the drop in rolling or tank-treading motion). This fundamental change in drop
kinematics affects the coefficients rather than the exponents in scaling relations. This
change has been characterized by coupling a two-dimensional half-plane boundary-
integral method to lubrication theory (Hodges et al. 2004).

While our results are not exact, they are asymptotically rational and should help
provide support to future computational studies of this problem, as well as physical
insight into the motion of viscous drops near boundaries.

An important extension of this study will be to treat transient motion, for example
to understand better the ‘bouncing’ motion seen by DeBisschop et al. (2002) in their
simulations of two-dimensional drops, to see how long it takes in an initial value
problem for the predicted sliding solutions of very viscous drops to be realized,
and to understand the relation between nearly uniform quasi-steady lubricating films
formed beneath large drops on gently tilted slopes (0 � α � 1) and unsteady dimples
formed beneath drops on a horizontal plane (α = 0, Yiantsios & Davis 1990). The case
FII deserves particular attention because of its relevance to cell adhesion (Hodges
& Jensen 2002), where viscous dissipation in a cell’s interior is likely to influence
strongly its rolling motion under shear flow on an adhesive surface.

Whilst some of the available data lend support to our estimates for drop speed
and film thickness, it is clear that more experimental evidence directly related to this
particular problem is required. It is often found (e.g. Cavanagh & Eckmann 1999;
Richard & Quéré 1999; Kim, Lee & Kang 2002; Aussillous 2002) that a difficultly
in observing drops moving down (or bubbles moving up) gently inclined walls stems
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from the fact that small drops remain ‘stuck’ to the wall because of contact angle
hysteresis. Only when the wall is tilted past some (relatively large) critical angle will
the drop move. However, this is because most experiments focus on viscous partially
wetting drops moving in air (or air bubbles suspended in liquid). More relevant to the
present study would be to observe a viscous drop moving through another viscous
liquid that strongly wets the wall, ensuring that the drop slides over a film and
moves at very small inclination angles. We hope that the existence of this theoretical
framework will stimulate new experiments in this area.

During the course of this work, S.R.H. was supported by an EPSRC research stu-
dentship. We are grateful for insightful comments from John Lister and L. Mahadevan.
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Aussillous, P. & Quéré, D. 2001 Liquid marbles. Nature 411, 924–927.
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